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Abstract

A new finite difference scheme on a non-uniform staggered grid in cylindrical coordinates is proposed for incom-

pressible flow. The scheme conserves both momentum and kinetic energy for inviscid flow with the exception of the time

marching error, provided that the discrete continuity equation is satisfied. A novel pole treatment is also introduced,

where a discrete radial momentum equation with the fully conservative convection scheme is introduced at the pole. The

pole singularity is removed properly using analytical and numerical techniques. The kinetic energy conservation

property is tested for the inviscid concentric annular flow for the proposed and existing staggered finite difference

schemes in cylindrical coordinates. The pole treatment is verified for inviscid pipe flow. Mixed second and high order

finite difference scheme is also proposed and the effect of the order of accuracy is demonstrated for the large eddy

simulation of turbulent pipe flow.
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1. Introduction

It is well known that energy-conservative finite difference schemes offer reliable and stable flow simu-

lations and, in general, are preferred over non-conservative schemes when used for direct and large eddy

simulations of turbulent flows. However, until recently the standard second order accurate staggered grid

finite difference scheme of Harlow and Welch [1] was the only scheme that simultaneously conserved mass,

momentum, and kinetic energy on a uniform mesh. A fully conservative high order accurate finite difference
scheme for uniform Cartesian staggered grids was recently developed by Morinishi et al. [2]. The scheme
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conserves momentum and kinetic energy simultaneously provided that the flow is inviscid and the discrete

continuity equation is satisfied.

Attempts to generalize the high order fully conservative scheme of Morinishi et al. [2] to non-uniform
meshes were not fully successful. The symmetry preserving extension of the scheme proposed by Vasilyev [3]

could not simultaneously conserve mass, momentum, and kinetic energy but, depending on the form of the

convective term, the conservation of either momentum or energy in addition to mass was achieved. It was

shown in [3] that the presence of non-zero commutation error between averaging and differencing operators

in the non-uniform directions of the mesh results in non-conservation of either energy or momentum for,

respectively, advective or skew-symmetric forms of the convective term. Realizing this limitation, Kaji-

shima [4] and Ham et al. [5] were able to extend the second order fully conservative scheme of Harlow and

Welch [1] to non-uniform grids by using weighted averages. However, the use of weighted averages resulted
in the reduction of accuracy on non-uniform meshes.

The ultimate objective of our study is to extend the fully conservative scheme ofMorinishi et al. [2] to non-

uniform meshes such that both the conservation properties and high order accuracy are preserved. The

general extension of the method to rectangular curvilinear coordinate system is currently underway and is

based on the recognition that in order to achieve full conservation, the equations of motion should be re-

written in curvilinear coordinates and the finite difference discretization should be performed in computa-

tional space (mapped curvilinear coordinates) instead of physical space (non-uniform curvilinear grid). This

allows the construction of energy-conservative high order finite difference schemes on non-uniform meshes.
The common feature of orthogonal curvilinear coordinates is the presence of the pole such as the axis of

symmetry in cylindrical coordinates, where, in general, the equations of motion are singular. The presence

of a singularity can destroy the conservation properties of the scheme and, thus, requires special consid-

eration. As a first step to achieve the ultimate goal of constructing fully conservative high order schemes on

non-uniform meshes, we will consider cylindrical coordinates. The cylindrical coordinate system is chosen

for two reasons. First, the Navier–Stokes equations written in cylindrical coordinates ðx; r; hÞ have a sin-

gularity at the pole, r ¼ 0. Second, many important flows of physical and engineering interest are described

in cylindrical coordinates, e.g. [6–8]. Eggels et al. [6] and Akselvoll and Moin [7] applied the standard
staggered scheme in cylindrical coordinates. Verzicco and Orlandi [8] introduced a special technique to

remove the pole singularity. However, these schemes are not energy conservative. Only the recent scheme

by Fukagata and Kasagi [9] conserves energy on a uniform grid for inviscid flow. They introduced the

volume-weighted interpolation proposed by Kajishima [4] and Ham et al. [5] to cylindrical coordinates.

In order to construct fully conservative schemes, the special treatment is required to remove the sin-

gularity at the pole. In particular, the radial velocity component at the pole is required for the flow sim-

ulations using the standard staggered grid configuration. The existing pole treatments are typically based on

central interpolations. The pole treatments by Fukagata and Kasagi [9] and Griffin et al. [10] are single-
valued and have better physical and numerical properties, while the treatment by Eggels et al. [6] is multi-

valued. However, their radial velocity at the pole is not governed by the discrete radial momentum equation

and, consequently, the kinetic energy is not conserved in the inviscid limit. In addition, the numerical

treatment of polar coordinates by Mohseni and Colonius [11], which avoids placing a grid point at the pole,

is not possible for the standard staggered grid configuration. In this work we propose to introduce a

discrete radial momentum equation at the pole, which results in energy conservation. The single-valued

property is satisfied through the reconstruction process.

The objectives of this work are manifold. The first objective concerns the generalization of the high order
schemes of Morinishi et al. [2] to non-uniform grids in cylindrical coordinates. The second objective is to

propose a novel pole treatment that in combination with the proposed scheme results in a fully conservative

high order scheme.

The paper is organized as follows. The governing equations for incompressible flow in cylindrical co-

ordinates and the corresponding transformed equations in computational space are presented in Section 2.
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The conservation properties of the new formulation are discussed there as well. The radial momentum

equation at the pole is introduced in Section 3. Fully conservative high order finite difference schemes in

cylindrical coordinates are proposed in Section 4. In Section 5, the existing pole treatments with central
interpolation are reviewed and a new pole treatment based on the radial momentum equation is proposed.

Finally, in Section 6 numerical tests for energy conservation are performed for an inviscid concentric

annular flow and the effect of pole treatments are studied for an inviscid pipe flow. Large eddy simulations

of turbulent pipe flow demonstrate the merit of the proposed high order fully conservative scheme.
2. Governing equations and conservation properties

The governing equations for incompressible flow are the continuity and momentum equations. The

governing equations for incompressible flow written in cylindrical coordinates are given by:
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where ux, ur and uh are velocity components of axial (x), radial (r) and azimuthal (h) directions in cylindrical

coordinates, fx, fr, and fh are body force components, q is the density, and p is the pressure. The com-

ponents of the viscous tensor, sij ði; j ¼ x; r; hÞ for the Newtonian fluid are given by
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Many finite difference schemes in cylindrical coordinates have been constructed in physical space, e.g. [6–8].
On the other hand, the mapping of independent variables is a useful tool for constructing finite difference

schemes on non-uniform grids. In this study, ðx; r; hÞ coordinates in physical space are, respectively, mapped

into ðfx; fr; fhÞ in computational space as

x ¼ xðfxÞ; r ¼ rðfrÞ; h ¼ hðfhÞ ð5Þ

and

fx ¼ fxðxÞ; fr ¼ frðrÞ; fh ¼ fhðhÞ: ð6Þ

For instance, the mapping of the r–h plane including the pole onto the fr–fh plane is shown in Fig. 1 for the

case of Nr ¼ 4 and Nh ¼ 8. Scaling factors and the Jacobian are defined as



Fig. 1. Mapping of (a) r–h plane onto (b) fr–fh plane for Nr ¼ 4 and Nh ¼ 8.
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The derivatives in physical space are transformed into computational space as
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In addition to the derivative mapping, we can use the following relations for equation transformation:

1

J
o

ofx
J
hx

� �
¼ 0;

1

J
o

ofr
J
hr

� �
¼ 1

r
;

1

J
o

ofh
J
hh

� �
¼ 0: ð9Þ

Finally, the transformed continuity and momentum equations can be written as
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The repeated indices, for instance, j, imply the summation over j ¼ x; r; h. In addition, the index for the

scaling factor moves with the accompanying derivative index. The formulation using the Jacobian was first

introduced by Vinokur [12]. In this study, we will construct a fully conservative finite difference scheme in



690 Y. Morinishi et al. / Journal of Computational Physics 197 (2004) 686–710
cylindrical coordinates for incompressible flow based on Eqs. (10)–(13), which implies that all spatial

discrete operations are done in the computational space. The pressure term in the momentum equation can

be represented symbolically as
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The convective term in the momentum equation can be written in the divergence, advective, or skew-

symmetric forms. The divergence form, ðDiv:Þi, is defined as
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The advective form, ðAdv:Þi, is given by
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The skew-symmetric form, ðSkew:Þi, is defined as the average of the divergence and advective forms:

ðSkew:Þi ¼
1

2
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1

2
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The three forms, ðDiv:Þi, ðAdv:Þi, and ðSkew:Þi, are commutable with the following identities, provided that

the continuity constraint is satisfied:

ðDiv:Þi ¼ ðAdv:Þi þ uiðCont:Þ; ð22Þ
ðSkew:Þi ¼ ðDiv:Þi �
1

2
uiðCont:Þ ¼ ðAdv:Þi þ

1

2
uiðCont:Þ: ð23Þ

Next, conservation properties for the momentum and the kinetic energy in cylindrical coordinates are
briefly reviewed. The term written in a form, ð1=JÞðo/=ofjÞ (hereafter referred as divergence form), is

conservative in the computational space, since the Gauss theorem is accomplished in the following way:Z
V
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where dV ¼ J dfx dfr dfh and dSj ¼ dfx dfr dfh=dfj. Consequently, any term written in the divergence form

is conserved a priori. It should be noted, that the momentum equations (2)–(4) or the transformed mo-
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mentum equations (11)–(13), in addition to the terms written in divergence form, have source terms such as

uhuh=r or uruh=r. These source terms, analogously to the body force components, contribute to the overall

momentum balance and energy exchange. However, these terms are physical and reflect the curvature of the
curvilinear coordinate system. Consequently, conservation properties of the finite different schemes should

be studied in light of their analytical counterparts, i.e. the terms written in divergence form should be

conserved, while the source terms in the discrete equations should contribute to the overall momentum and

energy balance the same way as in the continuous case.

The kinetic energy is defined as K ¼ ð1=2Þuiui ¼ ð1=2Þðu2x þ u2r þ u2hÞ. The transport equation for K for

inviscid flow without the body force is

oK
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The pressure term in the energy equation is reformed as follows:
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The convective term with the divergence form in the energy equation can be rewritten as follows:
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In the same manner, the advective and skew-symmetric forms of the convective term have, respectively, the

following forms in the energy equation:
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Therefore, the convective term written in the skew-symmetric form is conservative a priori, and the other

convection forms and the pressure terms are conservative, provided that the continuity constraint is sat-

isfied. Thus, the kinetic energy is conserved in the inviscid flow limit in the absence of the body force fi. This
energy conservation should be preserved for the energy conserving scheme.
3. Radial momentum equation at the pole

In this section, the momentum equation for the radial velocity component is considered at the pole, since

the component is defined at the pole in the standard staggered grid configuration. Here we select the cy-

lindrical coordinate system as x ¼ x, y ¼ r cos h and z ¼ r sin h. Corresponding transformation for the
vector components between r–h and y–z planes is given by

ur ¼ uy cos hþ uz sin h; ð30Þ
uh ¼ �uy sin hþ uz cos h: ð31Þ

In the same manner the transformation for the tensor components are
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Using the single-valued property at the pole for the velocity and tensor components in Cartesian coordi-

nates, we get
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The relation of Eq. (35) was pointed out by Constantinescu and Lele [13]. These relations are effectively

used for singularity removal with the aid of L�Hopital�s theorem:
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Eq. (37) will be adopted for shr at the pole in the discrete equations. The radial momentum equation, Eq.

(3), is rewritten at the pole with the aid of Eq. (38) as
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where the convection term is also rewritten in the same manner as Eq. (38). The above radial momentum

equation reconfirms that the singularity at the pole is not physical but coordinate originated, and it should

be used in future numerical and analytical studies. However in this study, the singularity removal is adopted

only for the viscous term, since the singularity on the convection term will be removed to satisfy the energy
conservation in the corresponding discrete equation. Thus, the radial momentum equation at the pole,

which we use in this study, is given by
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4. Fully conservative finite difference schemes in cylindrical coordinates

4.1. Second order finite difference scheme

In this study we propose the following scheme as the second order accurate finite difference scheme for
the continuity and momentum equations in cylindrical coordinates. Definition points for the velocity

components and pressure are specified in Fig. 2. The pressure is defined at the center of each cell,



Fig. 2. Definition points for the velocity components and pressure.
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ðxiþ1=2; rjþ1=2; hkþ1=2Þ, while the velocity components in the axial, radial and azimuthal directions are defined

at ðxi; rjþ1=2; hkþ1=2Þ, ðxiþ1=2; rj; hkþ1=2Þ and ðxiþ1=2; rjþ1=2; hkÞ, respectively, as the standard staggered configu-

ration. Fig. 3 shows the staggered grid arrangement in the fr–fh plane corresponding to Fig. 1(b). In

particular, the radial velocity is also defined at the pole, ðxiþ1=2; 0; hkþ1=2Þ. The continuity equation is dis-

cretized at the pressure point, while the components of the momentum equation are discretized at the

corresponding velocity points:
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where ‘‘-2’’ denotes a second order accurate approximation on a staggered grid in cylindrical coordinates.

Here, we suppose that the components of the viscous tensor are given at the required discrete points. In the

proposed finite difference scheme, all the discrete operations are done in the computational space. Spatial

discrete operators in the computational space are defined in Appendix A. The definitions of local and global

discrete conservation is given there as well. The finite difference approximations for the continuity and

pressure terms can be written as follows:
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ðConv:-2Þi is a generic form of the convection term and three forms are possible as in Morinishi et al. [2].



Fig. 3. Staggered grid configuration in fr–fh plane.
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Divergence form:
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Advective form:
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Skew-symmetric form:
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Note that the divergence form of the convective term is conserved a priori in the momentum equation in the

light of momentum conservation discussed in Section 2. The three discrete convection forms are com-
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Now we shall show the energy conservation property of the proposed finite difference scheme. To estimate

the energy conservation, a discrete kinetic energy norm defined at the pressure point is introduced for the

second order accurate discretization.
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The corresponding discrete kinetic energy equation for inviscid flow without the body force can be written as
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The pressure term in the energy equation is conservative, provided that the discrete continuity is satisfied:
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The conservation property of the skew-symmetric form is proved as follows:
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j
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� 1
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uh1f

h

� �1fr
1fr

þ 1

J
uh

J
r
ur1f

r
uh1f

h

� �1fh
1fh

: ð59Þ

The first term on the right-hand side of Eq. (59) is locally conservative. The sum of the second and third

terms over a periodic or zero-bounded domain is rewritten as (see Appendix A)

X 1

J

2664� ur
J
r
uh1f

h
uh1f

h

� �1fr
1fr

þ uh
J
r
ur1f

r
uh1f

h

� �1fh
1fh
3775 JDfxDfrDfh
� �

¼
X 1

r

h
� ur1f

r
uh1f

h
uh1f

h þ uh1f
h
ur1f

r
uh1f

h
i
JDfxDfrDfh
� �

¼ 0: ð60Þ
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Therefore, the sum of the second and third terms in the skew-symmetric form is globally conservative in the

energy equation. Conservation properties for the divergence and advective forms are the same as that for

the skew-symmetric form, which follows from the commutability equation (55). In summary, the proposed
finite difference scheme satisfies the conservation property as discussed in Section 2 in a discrete sense even

for non-uniform meshes, i.e. the scheme is fully conservative in cylindrical coordinates on a non-uniform

grid.

This study assumes that a temporal discretization error is negligible for the energy conservation

property. We will introduce a third order Runge–Kutta time marching method for the inviscid part.

Energy-conservative temporal discretization by Ham et al. [5] can be combined with the present spatial

discretization method with the energy norm of Eq. (56), although a non-linear implicit discrete system

should be solved at each time step.
The Jacobian and scaling factors are approximated as

hx ¼ Dx; hr ¼ Dr; hh ¼ rDh; J ¼ rDxDrDh; ð61Þ

with Dfx ¼ Dfr ¼ Dfh ¼ 1, where Dx, Dr and Dh are grid spacings at the defined point in the physical space,

respectively. The averaged Jacobian, J
1fi
, which appeared in the discrete equations, can be replaced by J for

simulations with computational region, which does not include r ¼ 0.
4.2. Mixed high and second order finite difference scheme

The azimuthal grid width is proportional to the radius for standard grid configuration in cylindrical

coordinates. Therefore, high order finite difference schemes in the azimuthal direction may be useful for

large eddy simulations in a pipe. In this section, a mixed high (x–h) and second (r) order energy conservative
finite difference scheme is presented. The discrete form for continuity and pressure terms are

ðCont:-n � 2 � nÞ ¼ 1

J

Xn=2
‘¼1

a‘
dð2‘�1Þ

dð2‘�1Þ f
x

J
hx

ux

� �
þ 1

J
d1

d1 fr
J
hr
ur

� �
þ 1

J

Xn=2
‘¼1

a‘
dð2‘�1Þ

dð2‘�1Þ f
h

J
hh

uh

� �
¼ 0; ð62Þ
ðPres:-n � 2 � nÞx ¼
J

J
1fx

1

q
1

hx

Xn=2
‘¼1

a‘
dð2‘�1Þ p
dð2‘�1Þ f

x ; ð63Þ
ðPres:-n � 2 � nÞr ¼
J

J
1fr

1

q
1

hr

d1 p
d1 fr

; ð64Þ
ðPres:-n � 2 � nÞh ¼
J

J
1fh

1

q
1

hh

Xn=2
‘¼1

a‘
dð2‘�1Þ p

dð2‘�1Þ f
h ; ð65Þ

where the a‘ are the interpolation weights and given as the solution of the following linear system:

Xn=2
‘¼1

ð2‘� 1Þ2ði�1Þa‘ ¼ di1; i ¼ 1; 2; . . . ; n=2: ð66Þ

The weights up to n ¼ 12 are summarized in Table 1. The components of the convection scheme written in

divergence form are:



Table 1

Weights for nth order interpolations

n a1 a2 a3 a4 a5 a6

2 +1 0 0 0 0 0

4 þ 9
8

� 1
8

0 0 0 0

6 þ 150
128

� 25
128

þ 3
128

0 0 0

8 þ 1225
1024

� 245
1024

þ 49
1024

� 5
1024

0 0

10 þ 39;690
32;768

� 8820
32;768

þ 2268
32;768

� 405
32;768

þ 35
32;768

0

12 þ 320;166
262;144

� 76;230
262;144

þ 22;869
262;144

� 5445
262;144

þ 847
262;144

� 63
262;144
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ðDiv:-n � 2 � nÞx ¼
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; ð67Þ
ðDiv:-n � 2 � nÞr ¼
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; ð68Þ
ðDiv:-n � 2 � nÞh ¼
1

J
1fh
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dð2‘�1Þ f
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uh1 fr
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J
hh
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J
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; ð69Þ

where /
nth fx

and /
nth fh

are the nth order interpolations that are defined, respectively, as

/
nth fx ¼

Xn=2
‘¼1

a‘ /
ð2‘�1Þ fx

; /
nth fh ¼

Xn=2
‘¼1

a‘ /
ð2‘�1Þ fh

: ð70Þ

The divergence form of the convection term is locally conservative and the energy is conserved, provided

that the discrete continuity equation, Eq. (62), is satisfied. Corresponding convection schemes with ad-

vective and skew-symmetric forms can also be defined. Analogously to the second order case, the advective

and skew-symmetric forms conserve momentum and energy, provided that the discrete continuity equation

is satisfied. The replacement of J
1fx

and J
1fh

by J
nthfx

and J
nthfh

in the denominators improves formal spatial

accuracy slightly for non-uniform grids, but is not essential. The introduction of the mixed high and

second order method is aimed at improving the modified wave numbers in the stream and azimuthal

directions.
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5. Pole treatment

5.1. Existing pole treatments with central interpolation

In direct numerical simulations of turbulent pipe flow, Eggels et al. [6] and Akselvoll and Moin [7] in-

troduced the following pole treatment:

urðx; 0; hkþ1=2Þ ¼ burðx; 0; hkþ1=2Þ; ð71Þ

where

burðx; 0; hkþ1=2Þ ¼
urðx; r1; hkþ1=2Þ � urðx; r1; hkþ1=2 þ pÞ

2
: ð72Þ

The velocity arrangement around the pole is shown in Fig. 4. The above treatment satisfies the antisym-

metric relation

urðx; 0; hkþ1=2Þ ¼ �urðx; 0; hkþ1=2 þ pÞ: ð73Þ

However, the corresponding velocity components in Cartesian coordinates are multi-valued ar r ¼ 0.

Griffin et al. [10] introduced a single-valued representation of the velocity component at r ¼ 0. The
transformation relations for the vector components between r–h and y–z planes are Eqs. (30), (31), and

uy ¼ ur cos h� uh sin h; ð74Þ
uz ¼ ur sin hþ uh cos h: ð75Þ

Griffin et al. used Eq. (30) to determine ur at r ¼ 0 as

urðx; 0; hkþ1=2Þ ¼ uyðxÞ cos hkþ1=2 þ uzðxÞ sin hkþ1=2: ð76Þ

The coefficients, uyðxÞ and uzðxÞ, are the averaged values of uy and uz at r ¼ 0 for a given x (on a r–h
plane).
Fig. 4. Velocity arrangement around the pole.
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uyðxÞ ¼
1

Nh

XNh�1

k¼0

burðx; 0; hkþ1=2Þ cos hkþ1=2

�
� buhðx; 0; hkÞ sin hk

�
;

uzðxÞ ¼
1

Nh

XNh�1

k¼0

burðx; 0; hkþ1=2Þ sin hkþ1=2

�
þ buhðx; 0; hkÞ cos hk

�
;

ð77Þ

where burðx; 0; hkþ1=2Þ is given by Eq. (72) and buhðx; 0; hkÞ is given by

buhðx; 0; hkÞ ¼
uhðx; r1=2; hkÞ � uhðx; r1=2; hk þ pÞ

2
: ð78Þ

Griffin et al. introduced one-sided interpolated values instead of bur and buh in their original paper [10].

Recently, Fukagata and Kasagi [9] introduced a single-valued representation of ur at r ¼ 0 based on the

series expansion of Constantinescu and Lele [13]. Their pole treatment can be interpreted as Eq. (76) with

uyðxÞ ¼ � 2

Nh

XNh�1

k¼0

buhðx; 0; hkÞ sin hk;

uzðxÞ ¼
2

Nh

XNh�1

k¼0

buhðx; 0; hkÞ cos hk:
ð79Þ

The combinations of coefficients, uyðxÞ and uzðxÞ, are also derived by using least square minimization of the

error of Eqs. (30) and (31). The coefficients of Griffin et al. [10] are obtained by least square minimization of

Eqs. (30) and (31), i.e. by minimizing the following L2-error:

QrhðxÞ ¼ 1

Nh

XNh�1

k¼0

burðx; 0; hkþ1=2Þ
�

� uyðxÞ cos hkþ1=2 � uzðxÞ sin hkþ1=2

�2
þ 1

Nh

XNh�1

k¼0

buhðx; 0; hkÞ
�

þ uyðxÞ cos hk � uzðxÞ cos hk
�2
: ð80Þ

Orthogonality relations of the trigonometric functions are used in the derivation process. The coefficients

of Fukagata and Kasagi [9] are derived by least square minimization of Eq. (31), i.e. by minimizing the
following L2-error:

QhðxÞ ¼ 1

Nh

XNh�1

k¼0

buhðx; 0; hkÞ
�

þ uyðxÞ cos hk � uzðxÞ cos hk
�2
: ð81Þ

There exists another coefficient representation, which minimizes the square error of Eq. (30), Qr:

QrðxÞ ¼ 1

Nh

XNh�1

k¼0

burðx; 0; hkþ1=2Þ
�

� uyðxÞ cos hkþ1=2 � uzðxÞ sin hkþ1=2

�2
: ð82Þ

Corresponding coefficients are:

uyðxÞ ¼
2

Nh

XNh�1

k¼0

burðx; 0; hkþ1=2Þ cos hkþ1=2;

uzðxÞ ¼
2

Nh

XNh�1

k¼0

burðx; 0; hkþ1=2Þ sin hkþ1=2:

ð83Þ
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In this study, the multi-valued pole treatment of Eq. (71) is called MðurÞ. The single-valued pole treatment

of Eq. (76) with Eqs. (77), (79) and (83) are referred to as Sður; uhÞ, SðuhÞ and SðurÞ, respectively. The single-
valued property is a good indicator for specifying the radial velocity at the pole. However the interpolated
values, bur and buh, are not governed by the momentum equation at the pole.
5.2. A new pole treatment

We believe that the best way to obtain ur at the pole is to solve a discrete radial momentum equation,

which is discretized in the same manner as those for the neighboring ur points. Eq. (12) (and its original

form, Eq. (3)) is mathematically singular at r ¼ 0. However, the origin of the singularity is not physical but

geometrical (coordinate system dependent), as was explained in Section 3. In this study, we propose to
introduce the following discrete radial momentum equation that corresponds to Eq. (40) at r ¼ 0:

o ur
o t

þ ðConv:-2Þr þ
1

q
1

hr

d2 p1f
r

d2 fr
¼ 1

hx

d1 sxr
d1 fx

þ 1

hr

d1 srr
d1 fr

þ 1

hr

d2
d2 fr

Dfh

Dh
d1 shr
d1 fh

� �
þ 1

hr

d1
d1 fr

srrð � shhÞ þ fr at r ¼ 0; ð84Þ

where ðConv:-2Þr is a generic form and specific forms are defined in Section 4.1. The energy conservative

convection schemes can also be applied for the radial momentum equation at the pole. The energy con-
servation property of the convection term in the region including the pole is confirmed in the same way as

that in Section 4.1 with the energy norm of Eq. (56). The introduction of the averaged Jacobian appearing

in the denominator of the discrete equation is necessary for removing the singularity. In the case of a

uniform grid, the difference between

XNx�1

i¼0

XNh=2�1

k¼0

J
1fr
			
xiþ1=2;0;hkþ1=2

þ
XNx�1

i¼0

XNr�1

j¼1

XNh�1

k¼0

J
1fr
			
xiþ1=2;rj;hkþ1=2

¼ pr2Nr�1=2Lx ð85Þ

and

XNx�1

i¼0

XNh=2�1

k¼0

J jxiþ1=2;0;hkþ1=2
þ

XNx�1

i¼0

XNr�1

j¼1

XNh�1

k¼0

J jxiþ1=2;rj;hkþ1=2
¼ pðr2Nr�1=2 � r21=2ÞLx ð86Þ

justifies the proposed Jacobian treatment, so the control volume for ur with J
1fr

fills a whole domain in-
cluding the pole, while the standard treatment introduces a hole at the pole because J jx;0;h ¼ 0. This also

reveals that the scheme with denominator J works for simulations in the region excluding r ¼ 0 as men-

tioned at the end of Section 4.1. Note that the Jacobian appearing as a numerator in the convection term of

Eq. (84) is standard, i.e. zero at r ¼ 0. This condition is required for the energy conservation when the

discrete continuity equation is solved with ððJ=hrÞurÞ ¼ 0 at r ¼ 0. In addition, the application of ðPres:-2Þr
at the pole yields op=or ¼ 0, which is not acceptable, while it offers the complete energy conservation for

flows including the pole. The reason for selection of the discrete pressure term (the third term on the left

hand side of Eq. (84)) at the pole will be explained in Section 6.
Some discrete variables at r6 0 are required for Eq. (84). First of all, we suppose

uxðx;�r; hÞ ¼ uxðx; r; hþ pÞ; ð87Þ
urðx;�r; hÞ ¼ �urðx; r; hþ pÞ; ð88Þ



Y. Morinishi et al. / Journal of Computational Physics 197 (2004) 686–710 701
Jðx;�r; hÞ ¼ Jðx; r; hþ pÞ; ð89Þ
J
hr
ur

� �				
x;0;h

¼ 0: ð90Þ

Other discrete variables at r6 0 are decided by imposing the condition that Eq. (84) at ðxiþ1=2; 0; hkþ1=2Þ is
equal to )Eq. (84) at ðxiþ1=2; 0; hkþ1=2 þ pÞ, which guarantees the condition of Eq. (88) at r ¼ 0. For instance,

from the relation,

d1
d1 fr

J
hr
ur

� �1 fr

ur1 fj

" #					
x;0;h

¼ � d1
d1 fr

J
hr
ur

� �1 fr

ur1 fj

" #					
x;0;hþp

we get

J
hr
ur

� �				
x;�r;h

¼ � J
hr
ur

� �				
x;r;hþp

: ð91Þ

In the same manner, the following relations are specified for the inviscid terms:

J
hx

ux
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x;�r;h

¼ J
hx

ux

� �				
x;r;hþp

; ð92Þ
J
hh

uh
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x;�r;h

¼ J
hh

uh

� �				
x;r;hþp

; ð93Þ
J
r
uh1f

h
uh1f

h

� �				
x;�r;h

¼ � J
r
uh1f

h
uh1f

h

� �				
x;r;hþp

: ð94Þ

The discrete pressure term satisfies the asymmetric condition. Required relations for the viscous terms are:

sxrjx;0;h ¼ �sxrjx;0;hþp; ð95Þ
srrjx;�r;h ¼ srrjx;r;hþp; ð96Þ
Dfh

Dh
d1 shr
d1 fh

� �				
x;�r;h

¼ Dfh

Dh
d1 shr
d1 fh

� �				
x;r;hþp

; ð97Þ
ðsrr � shhÞjx;�r;h ¼ ðsrr � shhÞjx;r;hþp: ð98Þ

Supplementary explanations may be required for the treatment of viscous terms. The radial derivative of

ux in sxr at the pole is estimated by ðhrÞr¼0 ¼ 2r1=2 with Dfr ¼ 1 and Eq. (87), so that Eq. (95) is satisfied. Eq.

(96) is satisfied with ðhrÞr¼r1=2
¼ ðhrÞr¼r�1=2

¼ r1, Df
r ¼ 1, and Eq. (88). Eqs. (97), (98) and the corresponding

discrete term in Eq. (84) are consistent with Eq. (36) in the sense of second order central finite difference

method.

In the staggered grid configuration, we should estimate osrh=or in the discrete uh equation at r ¼ r1=2, and
therefore we need srh at r ¼ 0 for the standard central discretization. We introduce a discrete form of Eq.

(37) for shr at r ¼ 0
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shr ¼ m
Dfh

Dh
d1
d1f

h

1

hr

d2ur
d2f

r

� �
at r ¼ 0: ð99Þ

This discrete form with Eq. (88) satisfies shrjx;0;h ¼ shrjx;0;hþp, which follows from Eq. (34).

Now we can close and solve the discrete system for the flow region including the pole in cylindrical

coordinates. However, the velocity components in Cartesian coordinates at r ¼ 0, corresponding to ur
obtained from Eq. (84), are still multi-valued. Therefore, the single-valued reconstruction by Eq. (76) with

uyðxÞ ¼
2

Nh

XNh�1

k¼0

u�r ðx; 0; hkþ1=2Þ cos hkþ1=2;

uzðxÞ ¼
2

Nh

XNh�1

k¼0

u�r ðx; 0; hkþ1=2Þ sin hkþ1=2

ð100Þ

is introduced. Here, u�r ðx; 0; hkþ1=2Þ is the radial velocity at r ¼ 0 obtained from Eq. (84).

In the present pole treatment, the radial velocity at the pole is obtained based on the radial momentum

equation with the energy-conservative convection scheme. The single-valued property is satisfied through

the single-valued reconstruction at the pole.
6. Numerical tests

6.1. Numerical method

The coupling algorithm of the discrete momentum and continuity equations for the viscous flow is based

on the second order splitting method by Dukowicz and Dvinsky [14]. The resulting discrete Poisson

equation for the pressure is solved directly using FFT in the periodic directions and tri-diagonal matrix

algorithm (TDMA) in the radial direction. Therefore, the discrete continuity equation is satisfied com-
pletely except for the round-off error of the computer. The temporal integration scheme is a combined

RK3/CN scheme. For the temporal integration scheme the device proposed by Akselvoll and Moin [15] is

introduced, where the computational domain is divided into two regions in which terms with derivatives in

only one coordinate direction are treated implicitly with the Crank–Nicolson scheme. In this study, second

order derivatives in the azimuthal direction are treated implicitly in 06 r < rNr=2, while second order de-

rivatives in the radial direction are treated implicitly in rNr=2 6 r6 rNr . For the inviscid flow simulations the

algorithm is adopted with m ¼ 0.
6.2. Inviscid flow in a concentric annular pipe

The objective of the first numerical test is to study the energy conservation property of the proposed

finite difference scheme. The test flow field is a concentric annular pipe with R1=R2 ¼ 0:1 and

R2 � R1 ¼ D ¼ 1:0, where R1 and R2 are inner and outer radii as shown in Fig. 5. The computational do-

main is 06 x6 Lxð¼ 4pDÞ, R1 6 r6R2 and 06 h6 2p, where the streamwise and azimuthal directions are

periodic. The grid resolution, Nx � Nr � Nh, is 16� 16� 32. The radial grid distribution is non-uniform with

a hyperbolic-tangent type stretching function, while the grid spacings in the periodic directions are uniform.
The initial condition of the simulation is a flow field computed by a viscous simulation with m ¼ 1=360 and

fx ¼ �2. The inviscid simulations are performed with m ¼ fx ¼ fr ¼ fh ¼ 0. The time increment, Dt, is

0.00005. Fig. 6 shows the evolution of total kinetic energy for the inviscid flow simulation. The total kinetic

energy is defined as



Fig. 5. Concentric annular flow.

Fig. 6. Total kinetic energy evolution for inviscid flow in a concentric annular pipe.
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TK ¼ 1

2

XNx�1

i¼0

XNr�1

j¼0

XNh�1

k¼0

J
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uxux
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"

þ J
1fr
urur

1fr

þ J
1fh
uhuh

1fh
#
xiþ1=2;rjþ1=2;hkþ1=2

;

where ðxiþ1=2; rjþ1=2; hkþ1=2Þ corresponds to the pressure node, and r0 ¼ R1 and rNr ¼ R2. The initial value is

TK0 ¼ 13308:1725 at t ¼ t0. Numerical simulations were performed for a number of existing finite difference

schemes in cylindrical coordinates. The details of these schemes are given in Appendix B. The inviscid

simulations with the standard, ðDiv:-stÞi, and Verzicco and Orlandi, ðDiv:-VOÞi, type convection schemes

diverge soon, while the total kinetic energy with a Fukagata and Kasagi type convection scheme,
ðDiv:-FKÞi, gradually increases with time. This coincides with the results reported in [9]. As it is clearly seen

in the figure, the total kinetic energy of the proposed scheme, ðDiv:-2Þi, slightly decreases with time. Fig. 7

shows the time increment dependence of the error with the present scheme at t � t0 ¼ 100. The error slope

of ðDiv:-2Þi is Dt3, which is the error due to the time integration scheme. Therefore, the present finite

difference scheme itself conserves the kinetic energy completely with the exception of the temporal inte-

gration error.

6.3. Inviscid flow in a straight pipe

The second numerical test is designed to check the energy conservative property of the present pole

treatment. The test flow field is a straight pipe flow with radius Rð¼ 1:0Þ as shown in Fig. 8. The



Fig. 7. Dependence of the total kinetic energy error on time increment for ðDiv:-2Þ and ðDiv:-FKÞ.

Fig. 8. Straight pipe flow.
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computational domain is 06 x6 Lxð¼ 4pRÞ, 06 r6R and 06 h6 2p, where the streamwise and azimuthal

directions are periodic. The grid resolution, Nx � Nr � Nh, is 16� 16� 32. The radial grid distribution is also

non-uniform with a hyperbolic-tangent type stretching function, while the grid spacings in the periodic

directions are uniform. The initial condition of the simulation is a flow field computed by a viscous sim-

ulation with m ¼ 1=180, fx ¼ �2 and fr ¼ fh ¼ 0. The inviscid simulations are done with

m ¼ fx ¼ fr ¼ fh ¼ 0. The time increment, Dt, is 0.001. The difference of the total kinetic energy evolution by

different pole treatments is illustrated in Fig. 9. The total kinetic energy is defined as in the previous test case
except that r0 ¼ 0 and rNr ¼ R. The initial value is TK0 ¼ 4804:65355 at t ¼ t0. The finite difference scheme

except at r ¼ 0 is the present one with ðDiv:-2Þi. The energy with the multi-valued pole treatment (MðurÞ)
diverges quickly. The energy with the single-valued pole treatments (Sður; uhÞ, SðuhÞ, SðurÞ) gradually in-

crease and finally diverge, while they are better than the multi-valued treatment. Therefore, previously

existing pole treatments inject unphysical kinetic energy production at r ¼ 0. One of the main objectives of

the present study is to introduce the radial momentum equation to define ur at r ¼ 0. Direct application of

the scheme proposed in Section 4.1 at r ¼ 0 offers complete kinetic energy conservation (zero in Fig. 9). A



Fig. 9. Kinetic energy evolution for inviscid flow in a straight pipe.
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slight decrease comes from the time integration error. However, it yields op=or ¼ 0 at r ¼ 0, which is not

acceptable from the physical point of view. Therefore, we have examined an alternative treatment of the

pressure term at the pole. Two possible candidates were the discrete pressure terms with stencil 1 or 2:

op
or

� 1

hr

d1 p
d1 fr

; ð101Þ
op
or

� 1

hr

d2 p1f
r

d2 fr
: ð102Þ

The kinetic energy of the case with Eq. (101), stencil 1 in Fig. 9, gradually increases with time while it is

much better than the cases with the existing pole treatments. On the other hand, the case with the discrete

pressure term given by Eq. (102), stencil 2 in Fig. 9, conserves the energy. This is the reason for selecting the

discrete pressure term proposed in Section 5.2.
6.4. Large eddy simulation of turbulent pipe flow

The third numerical test is the large eddy simulation (LES) of turbulent pipe flow. The computational

domain is 06 x6Lxð¼ 4pRÞ, 06 r6R and 06 h6 2p, where the streamwise and azimuthal directions are

periodic. The grid resolution, Nx � Nr � Nh, is 16� 64� 16 and 48� 64� 48. The radial grid distribution is

also non-uniform with a hyperbolic-tangent type stretching function, while the grid spacings in the periodic

directions are uniform. The numerical parameters are m ¼ 1=180, R ¼ 1, fx ¼ �2, and fr ¼ fh ¼ 0. The
corresponding Reynolds number is 180 based on the friction velocity, us, and the pipe radius, R. The
subgrid scale model is the dynamic Smagorinsky model of Germano et al. [16] with the least square

modification of Lilly [17]. For detailed implementation of the model please refer to Morinishi and Vasilyev

[18,19], where the model is compared with other subgrid scale models in plane channel flow. Here we just

use it for cylindrical coordinates. Figs. 10 and 11 show the computational results for 16� 64� 16 and

48� 64� 48 grids, respectively. The results with the respective mixed high and second order schemes are

labelled as 4th, 8th and 12th FDM. The symbols (s) indicate the direct numerical simulation (DNS) data of

pipe flow by Fukagata and Kasagi [9] with 256� 96� 128 grids for Lx ¼ 10R at Res ¼ 180. The LES with
the 8th and higher order simulations maintain the turbulent flow even for 16� 64� 16 grids, while the flow



Fig. 10. LES of turbulent pipe flow at Res ¼ 180 with 16� 64� 16 grid: (a) mean velocity profiles; (b) turbulence intensities.

Fig. 11. LES of turbulent pipe flow at Res ¼ 180 with 48� 64� 48 grid: (a) mean velocity profiles; (b) turbulence intensities.
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with the second and fourth order schemes are laminarized. This implies a possibility that an LES of pipe

flow with a more sophisticated subgrid scale model offers reliable results with the high order scheme even

for the coarse grid. In addition, the isotropy in the r–h plane (u0r ¼ u0h) is recovered close to the pole. The

LES with the second order simulation maintains the turbulent flow with a 48� 64� 48 grid. However, the

reliability of the mean velocity and turbulence intensities profiles are not enough. Considering the grid

configuration for the pipe, increasing the order of accuracy only in the periodic directions is a recommended

device for LES. The high order schemes offer better results than the second order scheme. The factors of
computational cost of the simulation per time step with 16� 64� 16 grid for the 4th, 8th and 12th order

schemes to the second one are 1.26, 1.78 and 2.29, respectively. On the other hand, the factors of the second

order scheme with 32� 64� 32, 48� 64� 48 and 64� 64� 64 grids to 16� 64� 16 grid are 2.08, 3.25 and

4.43, respectively. In addition, the use of finer mesh results in memory increase. Therefore, the mixed high

order scheme is recommended for the LES of turbulent pipe flow. The mixed high order schemes should be

beneficial for the DNS of pipe flow, although the merit of the schemes was tested only for the LES. The

representation of high order statistics with the second order scheme requires higher grid resolution than one

for mean velocity and turbulence intensity representation. For instance, the skewness factor of ur as shown
in Fig. 12 is strongly affected by the order of the method.



Fig. 12. Skewness factor of ur for the LES at Res ¼ 180 with 48� 64� 48 grid.

Y. Morinishi et al. / Journal of Computational Physics 197 (2004) 686–710 707
7. Conclusions

The main objective of the present study was to improve the numerical simulation of incompressible flow

in cylindrical coordinates. A fully conservative finite difference scheme for staggered and non-uniform grids

is proposed. The complete conservation is achieved by performing all discrete operations in computational

space. This is an appropriate extension of the fully conservative finite difference scheme by Morinishi et al.
[2] to non-uniform grids in cylindrical coordinates. A novel pole treatment is also proposed, where the

radial momentum equation is solved to determine the velocity at the pole. The singularity is properly re-

moved by analytical and numerical techniques. The single-valued property of the velocity at the pole is

satisfied through the proposed reconstruction process. Reliability and conservation properties of the

proposed scheme are numerically verified in inviscid flow simulations. The benefits of the proposed mixed

high and second order fully conservative scheme for large eddy simulations of turbulent flow in cylindrical

coordinates are demonstrated for turbulent pipe flow.
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Appendix A. Discrete operators

The first appendix presents the discrete operators used in this paper. The following discrete operators are

basically the same as those proposed in [2] except that the present operations are done in a computational

space in cylindrical coordinates.

The interpolation operator with stencil n acting on / in the fx direction is described as

/
n fxðfx; fr; fhÞ ¼ /ðfx þ nDfx=2; fr; fhÞ þ /ðfx � nDfx=2; fr; fhÞ

; ðA:1Þ

2
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where /
n fr

and /
n fh

are defined in the same manner as /
n fx

. The finite difference operator with stencil n
acting on / in the fx direction is given by

dn /
dn fx

ðfx; fr; fhÞ ¼ /ðfx þ nDfx=2; fr; fhÞ � /ðfx � nDfx=2; fr; fhÞ
nDfx

; ðA:2Þ

where dn /=dn fr and dn /=dn fh are defined in the same manner as dn /=dn fx. An interpolation operator

for the product of / and w is described as

f/wn fxðfx; fr; fhÞ ¼ 1

2
/ðfx þ nDfx=2; fr; fhÞ � wðfx � nDfx=2; fr; fhÞ

þ 1

2
wðfx þ nDfx=2; fr; fhÞ � /ðfx � nDfx=2; fr; fhÞ; ðA:3Þ

where f/wn fr and f/wn fh are defined in the same manner as f/wn fx . Note that nfj, appearing as a superscript,

does not follow the summation convention.

Following are useful identities associated with the discrete operators:

dn /
m fi

dn fj
¼ dn /

dn fj

m fi

;
dn /

m t

dn fj
¼ dn /

dn fj

m t

; ðA:4Þ
dn w � /n fj

dn fj
¼ w

dn /

dn fj

n fj

þ /
dn w

dn fj
ðA:5Þ
/
dn w � /n fj

dn fj
¼ 1

2

dn w � f//n fj

dn fj
þ 1

2
//

dn w

dn fj
ðA:6Þ

In this study, we set Dfx ¼ Dfr ¼ Dfh ¼ 1 in the computational space.

We now define two concepts of discrete conservation. We say that a discretization of a term,

Q ¼ ð1=JÞðo/=ofjÞ, is locally conservative if it can be written in the following from:

Q ¼
X
n

1

J
dnðUnÞ
dnf

j : ðA:7Þ

We say that a discretization of a term, Q, is globally conservative if the following relation holds in a periodic

field: X
fx

X
fr

X
fh

Q DV ¼ 0; ðA:8Þ

where DV ¼ J
Q3

j¼1 Df
j. Note that in the periodic case the local conservation (A.7) implies global conser-

vation. Also note that the definition (A.8) is a discrete analogue of Eq. (24). Finally, the following sum-

mation property is used in the proof of the global energy conservation in Section 4.1, Eqs. (59) and (60), for
the non-conservative terms in the periodic or zero-bounded directions.

XNj�1=2

i¼1=2

w /
1fj

fj

¼
XNj�1=2

i¼1=2

w
1fj

/: ðA:9Þ
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Appendix B. Existing convection schemes for cylindrical coordinates

To indicate the difference between the proposed and existing schemes, typical staggered finite difference

schemes in a cylindrical coordinate system are interpreted and represented in the form of Eqs. (47)–(49).

Therefore, the following schemes have the essence of the original formulation, while they are not identical

to the original ones for the case of a non-uniform grid. In addition, the following schemes have better

conservation properties than the original formulations.

Standard type [6,7]:

ðDiv:-stÞx ¼
1

J
1fx

d1
d1 fj

J
hj

uj1f
x
ux1f

j

� �
; ðB:1Þ
ðDiv:-stÞr ¼
1

J
1fr

d1
d1 fj

J
hj

uj1 fr ur1 fj
� �

� 1

r
uh1f

h
1fr

uh1f
h
1fr

ðB:2Þ
ðDiv:-stÞh ¼
1

J
1fh

d1
d1 fj

J
hj
uj1 fhuh1 fj

� �
þ 1

r
uh ur1f

r 1 fh

ðB:3Þ

Verzicco and Orlandi type [8]: To remove the pole singularity, Verzicco and Orlandi [8] introduced the

quantity rur. Here we interpret it as qj ¼ Juj. Rewriting the radial convective term of Eq. (48) in terms of qj
we obtain

1

J
1fr

d1
d1 fj

qj
hj

� �1 fr

qr
J


 �1 fj
" #

� 1

J
1fr

J
r

qh
J


 �1fh qh
J


 �1fh
" #1 fr

:

The first term is still singular when the discrete equation is adopted at the ur node adjacent to the singular

point. Therefore, they replaced it as

1

J
1fr

d1
d1 fj

qj
hj

� �1 fr

1

J
qr1 fj

" #
� 1

J
1fr

J
r

qh
J


 �1fh qh
J


 �1fh
" #1 fr

:

This is equivalent to the following form:

ðDiv:-VOÞr ¼
1

J
1fr

d1
d1 fj

J
hj
uj

� �1 fr

1

J
Jurð Þ1 fj

" #
� 1

J
1fr

J
r
uh1f

h
uh1f

h

� �1 fr

ðB:4Þ

We call this scheme as Verzicco and Orlandi type. It is apparent that the energy conservation property is

destroyed at the replacement stage, since this scheme does not require ur at the pole.

Fukagata and Kasagi type [9]: The convective scheme by Fukagata and Kasagi [9] is basically close to our

scheme. Apparent differences appear in the radial and azimuthal components.

ðDiv:-FKÞr ¼
1

v
1

J
1fr

d1
d1 fx

J
hx

ux

� �1 fr

ur1 fx

" #
þ 1

J
1fr

d1
d1 fr

J
hr
ur

� �1 fr

ur1 fr

" #

þ 1

J
1fr

d1
d1 fh

J
hh

uh

� �1 fr

ur1 fh

" #
� 1

r
1

hr
hr uhuhð Þ1f

h
� �1 fr

; ðB:5Þ
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ðDiv:-FKÞh ¼
1

J
1fh

d1
d1 fj

J
hj
uj

� �1 fh

uh1 fj

24 35þ 1

r
uh ur1f

r 1 fh

; ðB:6Þ

where the ad hoc coefficient v appeared in the first term of Eq. (B.5) is defined as v ¼ ðrhrÞ
1 fr

=ðrhrÞ. The
coefficient v is unity when the radial grid is uniform, and their finite difference convective scheme is

equivalent to ours when the grid is uniform. However, their scheme does not conserve energy for non-

uniform meshes, although it is better than the other existing ones and seems not to cause problem for

viscous flow simulations. Also the last terms in Eqs. (B.5) and (B.6) conserve energy, while they are different

from our formulation. Note that these terms conserve energy globally, even though the authors claimed it

as locally conservative.
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